Skip to main content
Log in

Merge of motion analysis, multibody dynamics and finite element method for the subject-specific analysis of cartilage loading patterns during gait: differences between rotation and moment-driven models of human knee joint

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Understanding joint loading is important when evaluating sports training methods, sports equipment design, preventive training regimens, post-op recovery procedures, or in osteoarthritis’ etiology research. A number of methods have been introduced to estimate joint loads but they have been limited by the lack of accuracy in the joint models, including primarily the lack of patient-specific motion inputs in the models with sophisticated, fibril-reinforced material models. The method reported here records and applies patient-specific human motion for in-depth cartilage stress estimation. First, the motion analysis of a subject was conducted. Due to skin motion, multibody simulation was used to correct motion capture. These data was used as an input in a finite element model. The model geometry was based on magnetic resonance imaging and cartilage was modeled as a fibril-reinforced poroviscoelastic material. Based on the experimental motion data (motion analysis and multibody simulation), two models were created: a rotation-controlled and a moment-controlled model. For comparison, a model with motion input from the literature was created. The rotation-controlled model showed the most even stress distribution between lateral and medial compartments and smallest stresses and strains in a depth-wise manner. The model based on the literature motion simulated very high stresses and uneven stress distribution between the joint compartments. Our new approach to determine dynamic knee cartilage loading enables estimations of stresses and strains for a specific subject over the entire motion cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dieppe, P.A., Lohmander, L.S.: Pathogenesis and management of pain in osteoarthritis. Lancet 365, 965–973 (2005)

    Article  Google Scholar 

  2. Leskinen, J., Eskelinen, A., Huhtala, H., Paavolainen, P., Remes, V.: The incidence of knee arthroplasty for primary osteoarthritis grows rapidly among baby boomers: a population-based study in Finland. Arthritis Rheumatol. 64, 423–428 (2012)

    Article  Google Scholar 

  3. Kujala, U.M., Kettunen, J., Paananen, H., Aalto, T., Battié, M., Impivaara, O., Videman, T., Sarna, S.: Knee osteoarthritis in former runners, soccer players, weight lifters, and shooters. Arthritis Rheum. 38, 539–546 (1995)

    Article  Google Scholar 

  4. Miyazaki, T., Wada, M., Kawahara, H., Sato, M., Baba, H., Shimada, S.: Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann. Rheum. Dis. 61(7), 617–622 (2002)

    Article  Google Scholar 

  5. Roos, H., Adalberth, T., Dahlberg, L., Lohmander, L.S.: Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthr. Cartil. 3, 261–267 (1995)

    Article  Google Scholar 

  6. Brand, K.D., Radin, E.L., Dieppe, P.A., van de Putte, L.: Yet more evidence that osteoarthitis is not cartilage disease. Ann. Rheum. Dis. 65, 1261–1264 (2006)

    Article  Google Scholar 

  7. Arokoski, J.P., Jurvelin, J.S., Väätäinen, U., Helminen, H.J.: Normal and pathological adaptations of articular cartilage to joint loading. Scand. J. Med. Sci. Sports 10, 186–198 (2000)

    Article  Google Scholar 

  8. Bisseling, R.W., Hof, A.L.: Handling of impact forces in inverse dynamics. J. Biomech. 39, 2438–2444 (2006)

    Article  Google Scholar 

  9. Blajer, W., Dziewiecki, K., Mazur, Z.: Multibody modeling of human body for the inverse dynamics analysis of sagittal plane movements. Multibody Syst. Dyn. 18, 217–232 (2007)

    Article  MATH  Google Scholar 

  10. Kłodowski, A., Rantalainen, T., Mikkola, A., Heinonen, A., Sievänen, H.: Flexible multibody approach in forward dynamic simulation of locomotive strains in human skeleton with flexible lower body bones. Multibody Syst. Dyn. 25(4), 395–409 (2011)

    Article  MATH  Google Scholar 

  11. Neptune, R.R., Kautz, S.A., Zajac, F.E.: Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J. Biomech. 34(11), 1387–1398 (2001)

    Article  Google Scholar 

  12. Alonso, J., Romero, F., Pàmies-Vilà, R., Lugrís, U., Font-Llagunes, J.M.: A simple approach to estimate muscle forces and orthosis actuation in powered assisted walking of spinal cord-injured subjects. Multibody Syst. Dyn. 28, 109–124 (2012)

    Article  MathSciNet  Google Scholar 

  13. Kłodowski, A., Valkeapää, A., Mikkola, A.: Pilot study on proximal femur strains during locomotion and fall-down scenario. Multibody Syst. Dyn. 28(3), 239–256 (2012)

    Article  MathSciNet  Google Scholar 

  14. Al Nazer, R., Klodowski, A., Rantalainen, T., Heinonen, A., Sievänen, H., Mikkola, A.: A full body musculoskeletal model based on flexible multibody simulation approach utilized in bone strain analysis during human locomotion. Comput. Method Biomech. Biomed. Eng. 14(6), 573–579 (2011)

    Article  MATH  Google Scholar 

  15. Al Nazer, R., Klodowski, A., Rantalainen, T., Heinonen, A., Sievänen, H., Mikkola, A.: Analysis of dynamic strains in tibia during human locomotion based on flexible multibody approach integrated with magnetic resonance imaging technique. Multibody Syst. Dyn. 20(4), 287–306 (2008)

    Article  MATH  Google Scholar 

  16. Geogi, T.: Clinical significance of bone changes in osteoarthritis. Ther. Adv. Musculoskelet. Dis. 4, 259–267 (2012)

    Article  Google Scholar 

  17. DiSilvestro, M.R., Suh, J.-K.F.: A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J. Biomech. 34, 519–525 (2001)

    Article  Google Scholar 

  18. Julkunen, P., Kiviranta, P., Wilson, W., Jurvelin, J.S., Korhonen, R.K.: Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model. J. Biomech. 40, 1862–1870 (2007)

    Article  Google Scholar 

  19. Adouni, M., Shirazi-Adl, A., Shirazi, R.: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses. J. Biomech. 45, 2149–2156 (2012)

    Article  Google Scholar 

  20. Dabiri, Y., Li, L.P.: Altered knee joint mechanics in simple compression associated with early cartilage degeneration. Comput. Math. Methods Med. 2013, 862903 (2013)

    Article  MathSciNet  Google Scholar 

  21. Kazemi, M., Li, L.P., Buschmann, M.D., Savard, P.: Partial meniscectomy changes fluid pressurization in articular cartilage in human knees. J. Biomech. Eng. 134, 021001 (2012)

    Article  Google Scholar 

  22. Mononen, M.E., Jurvelin, J.S., Korhonen, R.K.: Effects of radial tears and partial meniscectomy of lateral meniscus on the knee joint mechanics during the stance phase of the gait cycle—a 3D finite element study. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 31(8), 1208–1217 (2013)

    Article  Google Scholar 

  23. Mononen, M.E., Jurvelin, J.S., Korhonen, R.K.: Implementation of a gait cycle loading into healthy and meniscectomised knee joint models with fibril-reinforced articular cartilage. Comput. Methods Biomech. Biomed. Eng. 18(2), 141–152 (2013)

    Article  Google Scholar 

  24. Netravali, N.A., Koo, S., Giori, N.J., Andriacchi, T.P.: The effect of kinematic and kinetic changes on meniscal strains during gait. J. Biomech. Eng. 133, 011006 (2011)

    Article  Google Scholar 

  25. Saveh, A.H., Katouzian, H.R., Chizari, M.: Measurement of an intact knee kinematics using gait and fluoroscopic analysis. Knee Surg. Sports Traumatol. Arthrosc. 19, 267–272 (2011)

    Article  Google Scholar 

  26. Yang, N.H., Nayeb-Hashemi, H., Canavan, P.K., Vaziri, A.: Effect of frontal plane tibiofemoral angle on the stress and strain at the knee cartilage during the stance phase of gait. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 28, 1539–1547 (2010)

    Article  Google Scholar 

  27. Julkunen, P., Wilson, W., Isaksson, H., Jurvelin, J., Herzog, W., Korhonen, R.: A review of the combination of experimental measurements and fibril-reinforced modeling for investigation of articular cartilage and chondrocyte response to loading. Comput. Math. Methods Med. 2013, 23 (2013)

    Article  Google Scholar 

  28. Wilson, W., van Donkelaar, C.C., van Rietbergen, B., Ito, K., Huiskes, R.: Erratum to ‘Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study’ [J. Biomech. 37, 357–366 (2004)] and ‘A fibril-reinforced poroviscoelastic swelling model for articular cartilage’ [J. Biomech. 38, 1195–1204 (2005)]. J. Biomech. 38, 2138–2140 (2005)

    Article  Google Scholar 

  29. Kozanek, M., Hosseini, A., Liu, F., Van de Velde, S.K., Gill, T.J., Rubash, H.E., Li, G.: Tibiofemoral kinematics and condylar motion during the stance phase of gait. J. Biomech. 42, 1877–1884 (2009)

    Article  Google Scholar 

  30. Baughman, L.D.: Development of an interactive computer program to produce body description data, Dayton (1983)

  31. Engin, A.E., Chen, S.-M.: Human joint articulation and motion-resistive properties, Ohio (1987)

  32. Eycleshymer, A.C., Shoemaker, D.M.: A Cross-Section Anatomy. McGraw-Hill, New Yourk (1970)

    Google Scholar 

  33. Kłodowski, A.: Flexible Multibody Approach in Bone Strain Estimation During Physical Activity. Lappeenranta University of Technology, Lappeenranta (2012)

    Google Scholar 

  34. Momersteeg, T.J., Blankevoort, L., Huiskes, R., Kooloos, J.G., Kauer, J.M., Hendriks, J.C.: The effect of variable relative insertion orientation of human knee bone–ligament–bone complexes on the tensile stiffness. J. Biomech. 28, 745–752 (1995)

    Article  Google Scholar 

  35. Mononen, M.E., Julkunen, P., Toyras, J., Jurvelin, J.S., Kiviranta, I., Korhonen, R.K.: Alterations in structure and properties of collagen network of osteoarthritic and repaired cartilage modify knee joint stresses. Biomech. Model. Mechanobiol. 10, 357–369 (2011)

    Article  Google Scholar 

  36. Wilson, W., Van Donkelaar, C.C., Van Rietbergen, B., Ito, K., Huiskes, R.: Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J. Biomech. 37(3), 357–366 (2004)

    Article  Google Scholar 

  37. Korhonen, R.K., Laasanen, M.S., Töyräs, J., Rieppo, J., Hirvonen, J., Helminen, H.J., Jurvelin, J.S.: Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J. Biomech. 35, 903–909 (2002)

    Article  Google Scholar 

  38. Korhonen, R.K., Laasanen, M.S., Töyräs, J., Lappalainen, R., Helminen, H.J., Jurvelin, J.S.: Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J. Biomech. 36, 1373–1379 (2003)

    Article  Google Scholar 

  39. Armstrong, C.G., Mow, V.C.: Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J. Bone Jt. Surg., Am. Vol. 64, 88–94 (1982)

    Google Scholar 

  40. Shapiro, E.M., Borthakur, A., Kaufman, J.H., Leigh, J.S., Reddy, R.: Water distribution patterns inside bovine articular cartilage as visualized by 1H magnetic resonance imaging. Osteoarthr. Cartil. 9(6), 533–538 (2001)

    Article  Google Scholar 

  41. Mononen, M.E., Mikkola, M.T., Julkunen, P., Ojala, R., Nieminen, M.T., Jurvelin, J.S., Korhonen, R.K.: Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics—a 3D finite element analysis. J. Biomech. 45(3), 579–587 (2012)

    Article  Google Scholar 

  42. Below, S., Arnoczky, S.P., Dodds, J., Kooima, C., Walter, N.: The split-line pattern of the distal femur: a consideration in the orientation of autologous cartilage grafts. Arthroscopy 18, 613–617 (2002)

    Article  Google Scholar 

  43. Benninghoff, A.: Form und Bau der Gelenkknorpel in ihren Beziehungen zur Function. II. Der Aufbau des Gelenkknorpels in seinen Beziehungen zur Funktion. Z. Zellforsch. Mikrosk. Anat. 2, 783–862 (1925)

    Article  Google Scholar 

  44. Bottcher, P., Zeissler, M., Maierl, J., Grevel, V., Oechtering, G.: Mapping of split-line pattern and cartilage thickness of selected donor and recipient sites for autologous osteochondral transplantation in the canine stifle joint. Vet. Surg. 38, 696–704 (2009)

    Article  Google Scholar 

  45. Goodwin, D.W., Wadghiri, Y.Z., Zhu, H., Vinton, C.J., Smith, E.D., Dunn, J.F.: Macroscopic structure of articular cartilage of the tibial plateau: influence of a characteristic matrix architecture on MRI appearance. Am. J. Roentgenol. 182, 311–318 (2004)

    Article  Google Scholar 

  46. Leo, B.M., Turner, M.A., Diduch, D.R.: Split-line pattern and histologic analysis of a human osteochondral plug graft. Arthroscopy 20(Supplement 2), 39–45 (2004)

    Article  Google Scholar 

  47. Donahue, T.L., Hull, M.L., Rashid, M.M., Jacobs, C.R.: A finite element model of the human knee joint for the study of tibio-femoral contact. J. Biomech. Eng. 124, 273–280 (2002)

    Article  Google Scholar 

  48. Vaziri, A., Nayeb-Hashemi, H., Singh, A., Tafti, B.A.: Influence of meniscectomy and meniscus replacement on the stress distribution in human knee joint. Ann. Biomed. Eng. 36, 1335–1344 (2008)

    Article  Google Scholar 

  49. Zielinska, B., Donahue, T.L.: 3D finite element model of meniscectomy: changes in joint contact behavior. J. Biomech. Eng. 128, 115–123 (2006)

    Article  Google Scholar 

  50. Villegas, D.F., Maes, J.A., Magee, S.D., Donahue, T.L.: Failure properties and strain distribution analysis of meniscal attachments. J. Biomech. 40, 2655–2662 (2007)

    Article  Google Scholar 

  51. Kutzner, I., Heinlein, B., Graichen, F., Bender, A., Rohlmann, A., Halder, A., Beier, A., Bergmann, G.: Loading of the knee joint during activities of daily living measured in vivo in five subjects. J. Biomech. 43, 2164–2173 (2010)

    Article  Google Scholar 

  52. Komistek, R.D., Stiehl, J.B., Dennis, D.A., Paxson, R.D., Soutas-Little, R.W.: Mathematical model of the lower extremity joint reaction forces using Kane’s method of dynamics. J. Biomech. 31, 185–189 (1998)

    Article  Google Scholar 

  53. Kadaba, M.P., Ramakrishnan, H.K., Wootten, M.E.: Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 8, 383–392 (1990)

    Article  Google Scholar 

  54. Kempson, G.E., Spivey, C.J., Swanson, S.A.V., Freeman, M.A.R.: Patterns of cartilage stiffness on normal and degenerate human femoral heads. J. Biomech. 4(6), 597–609 (1971)

    Article  Google Scholar 

  55. Woo, S.-Y., Akeson, W.H., Jemmott, G.F.: Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension. J. Biomech. 9, 785–791 (1976)

    Article  Google Scholar 

  56. Zhao, D., Banks, S.A., Mitchell, K.H., D’Lima, D.D., Colwell, C.W., Fregly, B.J.: Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J. Orthop. Res. 25(6), 789–797 (2007)

    Article  Google Scholar 

  57. Thambyah, A., Goh, J.C., De, S.D.: Contact stresses in the knee joint in deep flexion. Med. Eng. Phys. 27(4), 329–335 (2005)

    Article  Google Scholar 

  58. Brand, R.A.: Joint contact stress: a reasonable surrogate for biological processes? Iowa Orthop. J. 25, 82 (2005)

    Google Scholar 

  59. D’Lima, D.D., Steklov, N., Fregly, B.J., Banks, S.A., Colwell, C.W.: In vivo contact stresses during activities of daily living after knee arthroplasty. J. Orthop. Res. 26(12), 1549–1555 (2008)

    Article  Google Scholar 

  60. Adouni, M., Shirazi-Adl, A.: Evaluation of knee joint muscle forces and tissue stresses-strains during gait in severe OA versus normal subjects. J. Orthop. Res. 32(1), 69–78 (2014)

    Article  Google Scholar 

  61. Zhao, D., Banks, S.A., D’Lima, D.D., Colwell, C.W., Fregly, B.J.: In vivo medial and lateral tibial loads during dynamic and high flexion activities. J. Orthop. Res. 25(5), 593–602 (2007)

    Article  Google Scholar 

  62. Mononen, M.E., Jurvelin, J.S., Korhonen, R.K.: Implementation of a gait cycle loading into healthy and meniscectomised knee joint models with fibril-reinforced articular cartilage. Comput. Methods Biomech. Biomed. Eng. 18(2), 141–152 (2015)

    Article  Google Scholar 

  63. Guess, T.M., Thiagarajan, G., Kia, M., Mishra, M.: A subject specific multibody model of the knee with menisci. Med. Eng. Phys. 32, 505–515 (2010)

    Article  Google Scholar 

  64. D’Lima, D.D., Fregly, B.J., Patil, S., Steklov, N., Colwell, C.W.: Knee joint forces: prediction, measurement, and significance. Proc. Inst. Mech. Eng., H J. Eng. Med. 226, 95–102 (2012)

    Article  Google Scholar 

  65. Räsänen, L.P., Mononen, M., Nieminen, M.T., Lammentausta, E., Jurvelin, J.S., Korhonen, R.K.: Implementation of subject-specific collagen architecture of cartilage into a 2D computational model of a knee joint-data from the osteoarthritis initiative (OAI). J. Orthop. Res. 31, 10–22 (2013)

    Article  Google Scholar 

  66. Shirazi, R., Shirazi-Adl, A., Hurtig, M.: Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J. Biomech. 41, 3340–3348 (2008)

    Article  Google Scholar 

  67. Pioletti, D.P., Rakotomanana, L.R., Leyvraz, P.-F.: Strain rate effect on the mechanical behavior of the anterior cruciate ligament-bone complex. Med. Eng. Phys. 21, 95–100 (1999)

    Article  Google Scholar 

  68. Gantoi, F.M., Brown, M.A., Shabana, A.A.: Finite element modeling of the contact geometry and deformation in biomechanics applications. J. Comput. Nonlinear Dyn. 8(4), 041013 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Academy of Finland (project #138574), the National Graduate School of Engineering Mechanics, Finland and the European Research Council under the European Union’s Seventh Framework Program (FP/2007–2013)/ERC Grant Agreement no. 281180 for their financial support. We are grateful to the Finnish IT Center for Science (CSC) for technical support and supercomputer time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adam Kłodowski or Mika E. Mononen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kłodowski, A., Mononen, M.E., Kulmala, J.P. et al. Merge of motion analysis, multibody dynamics and finite element method for the subject-specific analysis of cartilage loading patterns during gait: differences between rotation and moment-driven models of human knee joint. Multibody Syst Dyn 37, 271–290 (2016). https://doi.org/10.1007/s11044-015-9470-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9470-y

Keywords

Navigation